Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Chem Sci ; 15(13): 4723-4756, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550706

RESUMEN

Renewable biomass, with its abundant resources, provides a viable solution to address the energy crisis and mitigate environmental pollution. Furan compounds, including 5-hydroxymethylfurfural (HMF) and furfural (FF), serve as versatile platform molecules derived from the degradation of lignocellulosic cellulose, offering a crucial pathway for the conversion of renewable biomass. The electrocatalytic conversion of furan compounds using renewable electricity represents an enticing approach for transforming them into value-added chemicals. However, the complex chemistry of furan compounds leads to low selectivity of the target product, and the lower current density and Faraday efficiency make it difficult to achieve molded applications. Therefore, it is crucial to gain a better understanding of the mechanism and conditions of the reaction, enhance reaction activity and selectivity, and indicate the direction for industrial applications. Herein, we provide a comprehensive review of the recent advancements in the electrocatalytic of HMF and FF, focusing on mechanisms and pathways, catalysts, and factors affecting like electrolyte pH, potential, and substrate concentration. Furthermore, challenges and future application prospects are discussed. This review aims to equip researchers with a fundamental understanding of the electrochemical dehydrogenation, hydrogenation, and hydrolysis reactions involving furan compounds. Such insights are expected to accelerate the development of cost-effective electrochemical conversion processes for biomass derivatives and their scalability in large-scale applications.

2.
Angew Chem Int Ed Engl ; 63(17): e202400708, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38438333

RESUMEN

Targeting the trap-assisted non-radiative recombination losses and photochemical degradation occurring at the interface and bulk of perovskite, especially the overlooked buried bottom interface, a strategy of tailored-phase two-dimensional (TP-2D) crystal seed layer has been developed to improve the charge transport dynamics at the buried interface and bulk of perovskite films. Using this approach, TP-2D layer constructed by TP-2D crystal seeds at the buried interface can induce the formation of homogeneous interface electric field, which effectively suppress the accumulation of charge carriers at the buried interface. Additionally, the presence of TP-2D crystal seed has a positive effect on the crystallization process of the upper perovskite film, leading to optimized crystal quality and thus promoted charge transport inside bulk perovskites. Ultimately, the best performing PSCs based on TP-2D layer deliver a power conversion efficiency of 24.58 %. The devices exhibit an improved photostability with 88.4 % of their initial PCEs being retained after aging under continuous 0.8-sun illumination for 2000 h in air. Our findings reveal how to regulate the charge transport dynamics of perovskite bulk and interface by introducing homogeneous components.

3.
Angew Chem Int Ed Engl ; 63(20): e202403083, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38502273

RESUMEN

Dopant-free hole transport materials (HTMs) are ideal materials for highly efficient and stable n-i-p perovskite solar cells (PSCs), but most current design strategies for tailoring the molecular structures of HTMs are limited to single strategy. Herein, four HTMs based on dithienothiophenepyrrole (DTTP) core are devised through dual-strategy methods combining conjugate engineering and side chain engineering. DTTP-ThSO with ester alkyl chain that can form six-membered ring by the S⋅⋅⋅O noncovalent conformation lock with thiophene in the backbone shows good planarity, high-quality film, matching energy level and high hole mobility, as well as strong defect passivation ability. Consequently, a remarkable power conversion efficiency (PCE) of 23.3 % with a nice long-term stability is achieved by dopant-free DTTP-ThSO-based PSCs, representing one of the highest values for un-doped organic HTMs based PSCs. Especially, the fill factor (FF) of 82.3 % is the highest value for dopant-free small molecular HTMs-based n-i-p PSCs to date. Moreover, DTTP-ThSO-based devices have achieved an excellent PCE of 20.9 % in large-area (1.01 cm2) devices. This work clearly elucidates the structure-performance relationships of HTMs and offers a practical dual-strategy approach to designing dopant-free HTMs for high-performance PSCs.

4.
Angew Chem Int Ed Engl ; 63(14): e202319051, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305690

RESUMEN

The design of aqueous zinc (Zn) chemistry energy storage with high rate-capability and long serving life is a great challenge due to its inhospitable coordination environment and dismal interfacial chemistry. To bridge this big gap, herein, we build a highly reversible aqueous Zn battery by taking advantages of the biomass-derived cellulose nanocrystals (CNCs) electrolyte additive with unique physical and chemical characteristics simultaneously. The CNCs additive not only serves as fast ion carriers for enhancing Zn2+ transport kinetics but regulates the coordination environment and interface chemistry to form dynamic and self-repairing protective interphase, resulting in building ultra-stable Zn anodes under extreme conditions. As a result, the engineered electrolyte system achieves a superior average coulombic efficiency of 97.27 % under 140 mA cm-2, and steady charge-discharge for 982 h under 50 mA cm-2, 50 mAh cm-2, which proposes a universal pathway to challenge aqueous Zn chemistry in green, sustainable, and large-scale applications.

5.
Angew Chem Int Ed Engl ; 63(14): e202319100, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335151

RESUMEN

Residual lead iodide (PbI2) is deemed to a double-edged sword in perovskite film as small amounts of PbI2 are beneficial to the photovoltaic performance, but excessive will cause degradation of photovoltaic performance and stability. Herein, an in situ repair strategy has been developed by introducing amine-releasable mediator (methylammonium pyridine-2-carboxylic, MAPyA) to eliminate over-residual PbI2 and regulate the crystal quality of perovskite film. Notably, MAPyA can be partially decomposed into methylamine (MA) gas and pyridine-2-carboxylic (PyA) during high temperature annealing. The released MA can locally form liquid intermediate phase, facilitating the reconstruction of perovskite microcrystals and residual PbI2. Moreover, the leftover PyA is confirmed to effectively passivate the uncoordinated lead ions in final perovskite film. Based upon this, superior perovskite film with optimized crystal structure and holistic negligible PbI2 is acquired. The assembled device realizes outstanding efficiency of 24.06 %, and exhibits a remarkable operational stability that maintaining 87 % of its origin efficiency after continuous illumination for 1480 h. And the unencapsulated MAPyA-treated devices present significant uplift in humidity stability (maintaining ~93 % of the initial efficiency over 1500 h, 50-60 % relative humidity). Furthermore, the further optimization of this strategy with nanoimprint technology proves its superiority in the amplificative preparation for perovskite films.

6.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329002

RESUMEN

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

7.
Adv Mater ; : e2313098, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340310

RESUMEN

Despite the rapid development in the performances of organic solar cells (OSCs), high-performance OSC modules based on green printing are still limited. The severe Coffee-ring effect (CRE) is considered to be the primary reason for the nonuniform distribution of active layer films. To solve this key printing problem, the cosolvent strategy is presented to deposit the active layer films. The guest solvent Mesitylene with a higher boiling point and a lower surface tension is incorporated into the host solvent o-XY to optimize the rheological properties, such as surface tension and viscosity of the active layer solutions. And the synergistic effect of inward Marangoni flow generation and solution thickening caused by the cosolvent strategy can effectively restrain CRE, resulting in highly homogeneous large-area active layer films. In addition, the optimized crystallization and phase separation of active layer films effectively accelerate the charge transport and exciton dissociation of devices. Consequently, based on PM6:BTP-eC9 system, the device prepared with the co-solvent strategy shows the a power conversion efficiency of 17.80%. Moreover, as the effective area scales to 1 and 16.94 cm2 , the recorded performances are altered to 16.71% and 14.58%. This study provides a universal pathway for the development of green-printed high-efficiency organic photovoltaics.

8.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38224211

RESUMEN

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

9.
Adv Mater ; 36(15): e2310752, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183338

RESUMEN

Organic-inorganic hybrid perovskites are considered ideal candidates for future photovoltaic applications due to their excellent photovoltaic properties. Although solution-printed manufacturing has shown inherent potential for the low-cost, high-throughput production of thin-film semiconductor electronics, the high-quality and high-reproducibility deposition of large-area perovskite remains a bottleneck that restricts their commercialization due to the droplet coffee-ring effect (CRE). In this study, these issues are addressed by introducing an in situ polymer framework. The 3D framework formed by spontaneous cross-linking improves the precursor viscosity and homogenizes its heat diffusion coefficient, counteracting the lateral capillary flow of the colloidal particles and anchoring their flocculent movement. Thus, the Marangoni convection intensity is properly controlled to ensure high-quality perovskite films, which significantly enhances reproducibility in printing efficient photovoltaics by mitigating the CRE. Subsequently, the perovskite solar cells and modules achieve power conversion efficiencies of 23.94 and 17.53%, and exhibit positive environmental stability, retaining over 90 and 78% efficiency after storage for 2500 and 1600 h, respectively. This work may serves as a foundation for exploring precursor rheology to match the homogeneous deposition requirements of perovskite photovoltaics and facilitating the advancement of their printing manufacturing and commercialization transition.

10.
Adv Mater ; 36(18): e2313105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279607

RESUMEN

Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.

11.
Angew Chem Int Ed Engl ; 63(1): e202315233, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37990773

RESUMEN

Eliminating the undesired photoinstability of excess lead iodide (PbI2 ) in the perovskite film and reducing the energy mismatch between the perovskite layer and heterogeneous interfaces are urgent issues to be addressed in the preparation of perovskite solar cells (PVSCs) by two-step sequential deposition method. Here, the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4 ) is employed to convert superfluous PbI2 to more robust 1D EMIMPbI3 which can withstand lattice strain, while forming an interfacial dipole layer at the SnO2 /perovskite interface to reconfigure the interfacial energy band structure and accelerate the charge extraction. Consequently, the unencapsulated PVSCs device attains a champion efficiency of 24.28 % with one of the highest open-circuit voltage (1.19 V). Moreover, the unencapsulated devices showcase significantly improved thermal stability, enhanced environmental stability and remarkable operational stability accompanied by 85 % of primitive efficiency retained over 1500 h at maximum power point tracking under continuous illumination.

12.
Small ; 20(12): e2306808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946662

RESUMEN

Constructing high-performance hybrid electrolyte is important to advanced aqueous electrochemical energy storage devices. However, due to the lack of in-depth understanding of how the molecule structures of cosolvent additives influence the properties of electrolytes significantly impeded the development of hybrid electrolytes. Herein, a series of hybrid electrolytes are prepared by using ethylene glycol ether with different chain lengths and terminal groups as additives. The optimized 2 m LiTFSI-90%DDm hybrid electrolyte prepared from diethylene glycol dimethyl ether (DDm) molecule showcases excellent comprehensive performance and significantly enhances the operating voltage of supercapacitors (SCs) to 2.5 V by suppressing the activity of water. Moreover, the SC with 2 m LiTFSI-90%DDm hybrid electrolyte supplies a long-term cycling life of 50 000 cycles at 1 A g-1 with 92.3% capacitance retention as well as excellent low temperature (-40 ºC) cycling performance (10 000 times at 0.2 A g-1). Universally, Zn//polyaniline full cell with 2 m Zn(OTf)2-90%DDm electrolyte manifests outstanding cycling performance in terms of 77.9% capacity retention after 2,000 cycles and a dendrite-free Zn anode. This work inspires new thinking of developing advanced hybrid electrolytes by cosolvent molecule design toward high-performance energy storage devices.

13.
Small ; 20(4): e2305732, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712165

RESUMEN

With excellent homogeneity, compactness and controllable thickness, atomic layer deposition (ALD) technology is widely used in perovskite solar cells (PSCs). However, residual organic sources and undesired reactions pose serious challenges to device performance as well as stability. Here, ester groups of poly(ethylene-co-vinyl acetate) are introduced as a reaction medium to promote the nucleation and complete conversion of tetrakis(dimethylamino)tin(IV) (TDMA-Sn). Through simulations and experiments, it is verified that ester groups as Lewis bases can coordinate with TDMA-Sn to facilitate homogeneous deposition of ALD-SnOx , which acts as self-encapsulated interface with blocking properties against external moisture as well as internal ion migration. Meanwhile, a comprehensive evaluation of the self-encapsulated interface reveals that the energy level alignment is optimized to improve the carrier transport. Finally, the self-encapsulated device obtains a champion photovoltaic conversion efficiency (PCE) of 22.06% and retains 85% of the initial PCE after being stored at 85 °C with relative humidity of 85% for more than 800 h.

14.
Adv Mater ; 36(7): e2309379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37901965

RESUMEN

Flexible organic solar cells (FOSCs) have attracted considerable attention from researchers as promising portable power sources for wearable electronic devices. However, insufficient power conversion efficiency (PCE), intrinsic stretchability, and mechanical stability of FOSCs remain severe obstacles to their application. Herein, an entangled strategy is proposed for the synergistic optimization of PCE and mechanical properties of FOSCs through green sequential printing combined with polymer-induced spontaneous gradient heterojunction phase separation morphology. Impressively, the toughened-pseudo-planar heterojunction (Toughened-PPHJ) film exhibits excellent tensile properties with a crack onset strain (COS) of 11.0%, twice that of the reference bulk heterojunction (BHJ) film (5.5%), which is among the highest values reported for the state-of-the-art polymer/small molecule-based systems. Finite element simulation of stress distribution during film bending confirms that Toughened-PPHJ film can release residual stress well. Therefore, this optimal device shows a high PCE (18.16%) with enhanced (short-circuit current density) JSC and suppressed energy loss, which is a significant improvement over the conventional BHJ device (16.99%). Finally, the 1 cm2 flexible Toughened-PPHJ device retains more than 92% of its initial PCE (13.3%) after 1000 bending cycles. This work provides a feasible guiding idea for future flexible portable power supplies.

15.
Eur J Clin Microbiol Infect Dis ; 43(2): 297-304, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041721

RESUMEN

PURPOSE: To evaluate the performance of core genome multilocus sequence typing (cgMLST) for genotyping Mycobacterium tuberculosis (M.tuberculosis) Strains in regions where the lineage 2 strains predominate. METHODS: We compared clustering by whole-genome SNP typing with cgMLST clustering in the analysis of WGS data of 6240 strains from five regions of China. Using both the receiver operating characteristic (ROC) curve and epidemiological investigation to determine the optimal threshold for defining genomic clustering by cgMLST. The performance of cgMLST was evaluated by quantifying the sensitivity, specificity and concordance of clustering between two methods. Logistic regression was used to gauge the impact of strain genetic diversity and lineage on cgMLST clustering. RESULTS: The optimal threshold for cgMLST to define genomic clustering was determined to be ≤ 10 allelic differences between strains. The overall sensitivity and specificity of cgMLST averaged 99.6% and 96.3%, respectively; the concordance of clustering between two methods averaged 97.1%. Concordance was significantly correlated with strain genetic diversity and was 3.99 times (95% CI, 2.94-5.42) higher in regions with high genetic diversity (π > 1.55 × 10-4) compared to regions with low genetic diversity. The difference missed statistical significance, while concordance for lineage 2 strains (96.8%) was less than that for lineage 4 strains (98.3%). CONCLUSION : cgMLST showed a discriminatory power comparable to whole-genome SNP typing and could be used to genotype clinical M.tuberculosis strains in different regions of China. The discriminative power of cgMLST was significantly correlated with strain genetic diversity and was slightly lower with strains from regions with low genetic diversity.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Genotipo , Genoma Bacteriano , Tipificación de Secuencias Multilocus/métodos , China/epidemiología , Tuberculosis/microbiología
16.
Small ; 20(14): e2306954, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990368

RESUMEN

FAPbI3 perovskites have garnered considerable interest owing to their outstanding thermal stability, along with near-theoretical bandgap and efficiency. However, their inherent phase instability presents a substantial challenge to the long-term stability of devices. Herein, this issue through a dual-strategy of self-assembly 3D/0D quasi-core-shell structure is tackled as an internal encapsulation layer, and in situ introduction of excess PbI2 for surface and grain boundary defects passivating, therefore preventing moisture intrusion into FAPbI3 perovskite films. By utilizing this method alone, not only enhances the stability of the FAPbI3 film but also effectively passivates defects and minimizes non-radiative recombination, ultimately yielding a champion device efficiency of 23.23%. Furthermore, the devices own better moisture resistance, exhibiting a T80 lifetime exceeding 3500 h at 40% relative humidity (RH). Meanwhile, a 19.51% PCE of mini-module (5 × 5 cm2) is demonstrated. This research offers valuable insights and directions for the advancement of stable and highly efficient FAPbI3 perovskite solar cells.

17.
Adv Mater ; 36(13): e2308326, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37823716

RESUMEN

The air electrode is an essential component of air-demanding energy storage/conversion devices, such as zinc-air batteries (ZABs) and hydrogen fuel cells (HFCs), which determines the output power and stability of the devices. Despite atom-level modulation in catalyst design being recently achieved, the air electrodes have received much less attention, causing a stagnation in the development of air-demanding equipment. Herein, the evolution of air electrodes for ZABs and HFCs from the early stages to current requirements is reviewed. In addition, the operation mechanism and the corresponding electrocatalytic mechanisms of ZABs are summarized. In particular, by clarifying the air electrode interfaces of ZABs at different scales, several approaches to improve the air electrode in rechargeable ZABs are reviewed, including innovative electrode structures and bifunctional oxygen catalysts. Afterward, the operating mechanisms of proton-exchange-membrane fuel cells (PEMFCs) and anion-exchange-membrane fuel cells (AEMFCs) are explained. Subsequently, the strategies employed to enhance the efficiency of the membrane electrode assembly (MEA) in PEMFCs and AEMFCs, respectively, are highlighted and discussed in detail. Last, the prospects for air electrodes in ZABs and HFCs are considered by discussing the main challenges. The aim of this review is to facilitate the industrialization of ZABs and HFCs.

18.
Adv Mater ; 36(3): e2308159, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37831921

RESUMEN

The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.

19.
Sci Bull (Beijing) ; 69(3): 382-418, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38105163

RESUMEN

Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.

20.
Adv Sci (Weinh) ; 10(34): e2304506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814364

RESUMEN

Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...